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1 Solve the inequality 2|x − 3| > |3x + 1|. [4]

2 Solve the equation

ln(1+ x2) = 1+ 2 lnx,

giving your answer correct to 3 significant figures. [4]

3 Solve the equation

cos(θ + 60◦) = 2 sinθ,

giving all solutions in the interval 0◦ ≤ θ ≤ 360◦. [5]

4 (i) By sketching suitable graphs, show that the equation

4x2 − 1 = cotx

has only one root in the interval 0< x < 1
2π. [2]

(ii) Verify by calculation that this root lies between 0.6 and 1. [2]

(iii) Use the iterative formula

xn+1 = 1
2

√(1+ cotxn)
to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal
places. [3]

5 Let I = ä 1

0

x2√(4− x2) dx.

(i) Using the substitutionx = 2 sinθ, show that

I = ã 1
6π

0
4 sin2

θ dθ. [3]
(ii) Hence find the exact value ofI. [4]
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6 The complex numberß is given by

ß = (√3) + i.

(i) Find the modulus and argument ofß. [2]

(ii) The complex conjugate ofß is denoted byß* . Showing your working, express in the formx + iy,
wherex andy are real,

(a) 2ß + ß*,

(b)
iß*

ß .
[4]

(iii) On a sketch of an Argand diagram with originO, show the pointsA andB representing the
complex numbersß and iß* respectively. Prove that angleAOB = 1

6π. [3]

7 With respect to the originO, the pointsA andB have position vectors given by
−−→
OA = i + 2j + 2k and−−→

OB = 3i + 4j. The pointP lies on the lineAB andOP is perpendicular toAB.

(i) Find a vector equation for the lineAB. [1]

(ii) Find the position vector ofP. [4]

(iii) Find the equation of the plane which containsAB and which is perpendicular to the planeOAB,
giving your answer in the formax + by + cß = d. [4]

8 Let f(x) = 3x

(1+ x)(1+ 2x2) .

(i) Express f(x) in partial fractions. [5]

(ii) Hence obtain the expansion of f(x) in ascending powers ofx, up to and including the term inx3.
[5]

[Questions 9 and 10 are printed on the next page.]
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The diagram shows the curvey = x3 ln x and its minimum pointM.

(i) Find the exact coordinates ofM. [5]

(ii) Find the exact area of the shaded region bounded by the curve,thex-axis and the linex = 2. [5]

10 A certain substance is formed in a chemical reaction. The mass of substance formedt seconds after
the start of the reaction isx grams. At any time the rate of formation of the substance is proportional

to (20− x). Whent = 0, x = 0 and
dx
dt

= 1.

(i) Show thatx andt satisfy the differential equation

dx
dt

= 0.05(20− x). [2]
(ii) Find, in any form, the solution of this differential equation. [5]

(iii) Find x whent = 10, giving your answer correct to 1 decimal place. [2]

(iv) State what happens to the value ofx ast becomes very large. [1]
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